Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Lett ; 586: 216666, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38311053

RESUMO

Glioblastoma (GBM) is a highly aggressive and treatment-resistant brain tumor, necessitating novel therapeutic strategies. In this study, we present a mechanistic breakthrough by designing and evaluating a series of abiraterone-installed hydroxamic acids as potential dual inhibitors of CYP17A1 and HDAC6 for GBM treatment. We established the correlation of CYP17A1/HDAC6 overexpression with tumor recurrence and temozolomide resistance in GBM patients. Compound 12, a dual inhibitor, demonstrated significant anti-GBM activity in vitro, particularly against TMZ-resistant cell lines. Mechanistically, compound 12 induced apoptosis, suppressed recurrence-associated genes, induced oxidative stress and initiated DNA damage response. Furthermore, molecular modeling studies confirmed its potent inhibitory activity against CYP17A1 and HDAC6. In vivo studies revealed that compound 12 effectively suppressed tumor growth in xenograft and orthotopic mouse models without inducing significant adverse effects. These findings highlight the potential of dual CYP17A1 and HDAC6 inhibition as a promising strategy for overcoming treatment resistance in GBM and offer new hope for improved therapeutic outcomes.


Assuntos
Androstenos , Neoplasias Encefálicas , Glioblastoma , Esteroide 17-alfa-Hidroxilase , Animais , Humanos , Camundongos , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Desacetilase 6 de Histona/genética , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Estresse Oxidativo , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Med Chem ; 67(4): 2963-2985, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38285511

RESUMO

Structural analysis of tazemetostat, an FDA-approved EZH2 inhibitor, led us to pinpoint a suitable site for appendage with a pharmacophoric fragment of second-generation HSP90 inhibitors. Resultantly, a magnificent dual EZH2/HSP90 inhibitor was pinpointed that exerted striking cell growth inhibitory efficacy against TMZ-resistant Glioblastoma (GBM) cell lines. Exhaustive explorations of chemical probe 7 led to several revelations such as (i) compound 7 increased apoptosis/necrosis-related gene expression, whereas decreased M phase/kinetochore/spindle-related gene expression as well as CENPs protein expression in Pt3R cells; (ii) dual inhibitor 7 induced cell cycle arrest at the M phase; (iii) compound 7 suppressed reactive oxygen species (ROS) catabolism pathway, causing the death of TMZ-resistant GBM cells; and (iv) compound 7 elicited substantial in vivo anti-GBM efficacy in experimental mice xenografted with TMZ-resistant Pt3R cells. Collectively, the study results confirm the potential of dual EZH2-HSP90 inhibitor 7 as a tractable anti-GBM agent.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Animais , Camundongos , Temozolomida/farmacologia , Apoptose , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Glioblastoma/metabolismo , Inibidores Enzimáticos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico
3.
Chembiochem ; 25(3): e202300744, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38055188

RESUMO

Hirudins, natural sulfo(glyco)proteins, are clinical anticoagulants that directly inhibit thrombin, a key coagulation factor. Their potent thrombin inhibition primarily results from antagonistic interactions with both the catalytic and non-catalytic sites of thrombin. Hirudins often feature sulfate moieties on Tyr residues in their anionic C-terminus region, enabling strong interactions with thrombin exosite-I and effectively blocking its engagement with fibrinogen. Although sulfotyrosines have been identified in various hirudin variants, the precise relationship between sulfotyrosine and the number of negatively charged amino acids within the anionic-rich C-terminus peptide domain for the binding of thrombin has remained elusive. By using Fmoc-SPPS, hirudin dodecapeptides homologous to the C-terminus of hirudin variants from various leech species were successfully synthesized, and the effect of sulfotyrosine and the number of negatively charged amino acids on hirudin-thrombin interactions was investigated. Our findings did not reveal any synergistic effect between an increasing number of sulfotyrosines or negatively charged amino acids and their inhibitory activity on thrombin or fibrinolysis in the assays, despite a higher binding level toward thrombin in the sulfated dodecapeptide Hnip_Hirudin was observed in SPR analysis.


Assuntos
Hirudinas , Trombina , Tirosina/análogos & derivados , Hirudinas/farmacologia , Hirudinas/química , Hirudinas/metabolismo , Aminoácidos , Peptídeos/farmacologia , Sítios de Ligação
4.
Curr Drug Targets ; 24(15): 1184-1208, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37946353

RESUMO

Proteolysis Targeting Chimeras (PROTACs) technology has emerged as a promising strategy for the treatment of undruggable therapeutic targets. Researchers have invested a great effort in developing druggable PROTACs; however, the problems associated with PROTACs, including poor solubility, metabolic stability, cell permeability, and pharmacokinetic profile, restrict their clinical utility. Thus, there is a pressing need to expand the size of the armory of PROTACs which will escalate the chances of pinpointing new PROTACs with optimum pharmacokinetic and pharmacodynamics properties. N- heterocycle is a class of organic frameworks that have been widely explored to construct new and novel PROTACs. This review provides an overview of recent efforts of medicinal chemists to develop N-heterocycle-based PROTACs as effective cancer therapeutics. Specifically, the recent endeavors centred on the discovery of PROTACs have been delved into various classes based on the E3 ligase they target (MDM2, IAP, CRBN, and other E3 ligases). Mechanistic insights revealed during the biological assessment of recently furnished Nheterocyclic- based PROTACs constructed via the utilization of ligands for various E3 ligases have been discussed.


Assuntos
Quimera de Direcionamento de Proteólise , Ubiquitina-Proteína Ligases , Humanos , Permeabilidade , Solubilidade , Ligantes
5.
J Enzyme Inhib Med Chem ; 38(1): 2276665, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37919954

RESUMO

Structural tailoring of the flavone framework (position 7) via organopalladium-catalyzed C-C bond formation was attempted in this study. The impact of substituents with varied electronic effects (phenyl ring, position 2 of the benzopyran scaffold) on the antitumor properties was also assessed. Resultantly, the efforts yielded a furyl arm bearing benzopyran possessing a 4-fluoro phenyl ring (position 2) (14) that manifested a magnificent antitumor profile against the Ishikawa cell lines mediated through dual inhibition of PARP and tubulin [(IC50 (PARP1) = 74 nM, IC50 (PARP2) = 109 nM) and tubulin (IC50 = 1.4 µM)]. Further investigations confirmed the ability of 14 to induce apoptosis as well as autophagy and cause cell cycle arrest at the G2/M phase. Overall, the outcome of the study culminated in a tractable dual PARP-tubulin inhibitor endowed with an impressive activity profile against endometrial cancer.


Assuntos
Antineoplásicos , Neoplasias do Endométrio , Flavonas , Humanos , Feminino , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química , Tubulina (Proteína)/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/patologia , Flavonas/farmacologia , Benzopiranos , Proliferação de Células
6.
Bioorg Chem ; 141: 106893, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37783100

RESUMO

Diverse drug design strategies viz. molecular hybridization, substituent installation, scaffold hopping, isosteric replacement, high-throughput screening, induction and separation of chirality, structure modifications of phytoconstituents and use of structural templates have been exhaustively leveraged in the last decade to load the chemical toolbox of PARP inhibitors. Resultantly, numerous promising scaffolds have been pinpointed that in turn have led to the resuscitation of the credence to PARP inhibitors as cancer therapeutics. This review briefly presents the physiological functions of PARPs, the pharmacokinetics, and pharmacodynamics, and the interaction profiles of FDA-approved PARP inhibitors. Comprehensively covered is the section on the drug design strategies employed by drug discovery enthusiasts for furnishing PARP inhibitors. The impact of structural variations in the template of designed scaffolds on enzymatic and cellular activity (structure-activity relationship studies) has been discussed. The insights gained through the biological evaluation such as profiling of physicochemical properties andin vitroADME properties, PK assessments, and high-dose pharmacology are covered.


Assuntos
Neoplasias , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/química , Relação Estrutura-Atividade , Neoplasias/tratamento farmacológico , Descoberta de Drogas , Desenho de Fármacos
7.
Int J Mol Sci ; 24(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37628767

RESUMO

Colorectal cancer (CRC) is one of the most commonly diagnosed malignancies and a leading cause of cancer worldwide. Histone deacetylases (HDACs), which regulate cell proliferation and survival, are associated with the development and progression of cancer. Moreover, HDAC inhibitors are promising therapeutic targets, with five HDAC inhibitors approved for cancer treatment to date. However, their safety profile necessitates the exploration of well-tolerated HDAC inhibitors that can be used in cancer therapeutic strategies. In this study, the pan-HDAC inhibitor MPT0G236 reduced the viability and inhibited the proliferation of human colorectal cancer cells, and normal human umbilical vein endothelial cells (HUVECs) showed reduced sensitivity. These findings indicated that MPT0G236 specifically targeted malignant tumor cells. Notably, MPT0G236 significantly inhibited the activities of HDAC1, HDAC2, and HDAC3, Class I HDACs, as well as HDAC6, a Class IIb HDAC, at low nanomolar concentrations. Additionally, it promoted the accumulation of acetyl-α-tubulin and acetyl-histone H3 in HCT-116 and HT-29 cells in a concentration-dependent manner. Furthermore, MPT0G236 treatment induced G2/M cell cycle arrest in CRC cells by initially regulating the levels of cell-cycle-related proteins, such as p-MPM2; specifically reducing p-cdc2 (Y15), cyclin B1, and cdc25C levels; and subsequently inducing apoptosis through the caspase-dependent pathways and PARP activation. Our findings demonstrate that MPT0G236 exhibits significant anticancer activity in human colorectal cancer cells.


Assuntos
Neoplasias Colorretais , Inibidores de Histona Desacetilases , Humanos , Inibidores de Histona Desacetilases/farmacologia , Apoptose , Proliferação de Células , Proteínas de Ciclo Celular , Histona Desacetilases , Células Endoteliais da Veia Umbilical Humana , Neoplasias Colorretais/tratamento farmacológico
8.
Expert Opin Drug Discov ; 18(10): 1169-1193, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37525475

RESUMO

INTRODUCTION: PARP inhibitors block the DNA-repairing mechanism of PARP and represent a promising class of anti-cancer therapy. The last decade has witnessed FDA approvals of several PARP inhibitors, with some undergoing advanced-stage clinical investigation. Medicinal chemists have invested much effort to expand the structure pool of PARP inhibitors. Issues associated with the use of PARP inhibitors that make their standing disconcerting in the pharmaceutical sector have been addressed via the design of new structural assemblages. AREA COVERED: In this review, the authors present a detailed account of the medicinal chemistry campaigns conducted in the recent past for the construction of PARP1/PARP2 inhibitors, PARP1 biased inhibitors, and PARP targeting bifunctional inhibitors as well as PARP targeting degraders (PROTACs). Limitations associated with FDA-approved PARP inhibitors and strategies to outwit the limitations are also discussed. EXPERT OPINION: The PARP inhibitory field has been rejuvenated with numerous tractable entries in the last decade. With numerous magic bullets in hand coupled with unfolded tactics to outwit the notoriety of cancer cells developing resistance toward PARP inhibitors, the dominance of PARP inhibitors as a sagacious option of targeted therapy is highly likely to be witnessed soon.


Assuntos
Neoplasias , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Reparo do DNA , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico
9.
Biochim Biophys Acta Rev Cancer ; 1878(5): 188957, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37488051

RESUMO

Eicosanoids are a family of bioactive lipids that play diverse roles in the normal physiology of the brain, including neuronal signaling, synaptic plasticity, and regulation of cerebral blood flow. In the brain, eicosanoids are primarily derived from arachidonic acid, which is released from membrane phospholipids in response to various stimuli. Prostaglandins (PGs) and leukotrienes (LTs) are the major classes of eicosanoids produced in the brain, and they act through specific receptors to modulate various physiological and pathological processes. Dysregulation of eicosanoids has been implicated in the development and progression of brain tumors, including glioblastoma (GBM), meningioma, and medulloblastoma. Eicosanoids have been shown to promote tumor cell proliferation, migration, invasion, angiogenesis, and resistance to therapy. Particularly, PGE2 promotes GBM cell survival and resistance to chemotherapy. Understanding the role of eicosanoids in brain tumors can inform the development of diagnostic and prognostic biomarkers, as well as therapeutic strategies that target eicosanoid pathways. Cyclooxygenase (COX)-2 and 5-lipoxygenase (LOX) inhibitors have been shown to reduce the growth and invasiveness of GBM cells. Moreover, eicosanoids have immunomodulatory effects that can impact the immune response to brain tumors. Understanding the role of eicosanoids in the immune response to brain tumors can inform the development of immunotherapy approaches for these tumors. Overall, the complex role of eicosanoids in the brain underscores the importance of further research to elucidate their functions in normal physiology and disease, and highlights the potential for developing novel therapeutic approaches that target eicosanoid pathways in brain tumors.


Assuntos
Neoplasias Encefálicas , Eicosanoides , Eicosanoides/metabolismo , Encéfalo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Humanos , Animais , Transdução de Sinais , Dinoprostona/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/terapia
10.
Eur J Med Chem ; 258: 115505, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37302341

RESUMO

Precise and accurate control of cell cycle progression is required to maintain cell identity and proliferation. Failing to keep it will lead to genome instability and tumorigenesis. Cell Division Cycle 25 (CDC25) phosphatases are the key to regulating the activity of the master cell cycle controller, cyclin-dependent kinases (CDKs). Dysregulation of CDC25 has been shown to associate with several human malignancies. Here, we reported a series of derivatives of the CDC25 inhibitor, NSC663284, bearing quinones as core scaffolds and morpholin alkylamino side chains. Among these derivatives, the cytotoxic activity of the 6-isomer of 5,8-quinolinedione derivatives (6b, 16b, 17b, and 18b) displayed higher potency against colorectal cancer (CRC) cells. Compound 6b possessed the most antiproliferative activity, with IC50 values of 0.59 µM (DLD1) and 0.44 µM (HCT116). The treatment of compound 6b resulted in a remarkable effect on cell cycle progression, blocking S-phase progression in DLD1 cells straight away while slowing S-phase progression and accumulated cells in the G2/M phase in HCT116 cells. Furthermore, we showed that compound 6b inhibited CDK1 dephosphorylation and H4K20 methylation in cells. The treatment with compound 6b induced DNA damage and triggered apoptosis. Our study identifies compound 6b as a potent CDC25 inhibitor that induces genome instability and kills cancer cells through an apoptotic pathway, deserving further investigation to fulfill its candidacy as an anti-CRC agent.


Assuntos
Neoplasias Colorretais , Fosfatases cdc25 , Humanos , Divisão Celular , Ciclo Celular , Instabilidade Genômica , Neoplasias Colorretais/tratamento farmacológico
11.
Eur J Med Chem ; 256: 115459, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37172473

RESUMO

Monoamine oxidase A (MAO A) and heat shock protein 90 (HSP90) inhibitors have been shown to decrease the progression of glioblastoma (GBM) and other cancers. In this study, a series of MAO A/HSP90 dual inhibitors were designed and synthesized in the hope to develop more effective treatment of GBM. Compounds 4-b and 4-c are conjugates of isopropylresorcinol (pharmacophore of HSP90 inhibitor) with the phenyl group of clorgyline (MAO A inhibitor) by a tertiary amide bond substituted with methyl (4-b) or ethyl (4-c) group, respectively. They inhibited MAO A activity, HSP90 binding, and the growth of both TMZ-sensitive and -resistant GBM cells. Western blots showed that they increased HSP70 expression indicating reduced function of HSP90, reduced HER2 and phospho-Akt expression similar to MAO A or HSP90 inhibitor itself. Both compounds decreased IFN-γ induced PD-L1 expression in GL26 cells, suggesting they can act as immune checkpoint inhibitor. Further, they reduced tumor growth in GL26 mouse model. NCI-60 analysis showed they also inhibited the growth of colon cancer, leukemia, non-small cell lung and other cancers. Taken together, this study demonstrates MAO A/HSP90 dual inhibitors 4-b and 4-c reduced the growth of GBM and other cancers, and they have potential to inhibit tumor immune escape.


Assuntos
Antineoplásicos , Glioblastoma , Camundongos , Animais , Monoaminoxidase/metabolismo , Glioblastoma/tratamento farmacológico , Inibidores da Monoaminoxidase/farmacologia , Clorgilina/farmacologia , Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP70 , Proteínas de Choque Térmico HSP90
12.
Expert Opin Ther Pat ; 33(5): 349-369, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37249104

RESUMO

INTRODUCTION: Histone deacetylase (HDAC) inhibitors have been considered as an attractive strategy to reverse aberrant epigenetic changes associated with cancer treatments. The use of HDAC inhibitors in various cancer types has continued to develop for decades, bringing several novel HDAC inhibitors successfully into clinical trials. The combination use of HDAC inhibitors with other agents have also been developed and have demonstrated superior efficacy compared to that of monotherapy in recent studies. Hence, development of new anticancer treatment and therapeutic regimen is necessary. AREAS COVERED: This review summarizes a comprehensive review of the patent literature from 2020 to 2022 including HDAC inhibitors and their use as anticancer agents (searched from European Patent Office, 2020-2022). The approved and developing HDAC inhibitors are described. It also provides perspectives on the challenges and future opportunities. EXPERT OPINION: Although hundreds of clinical trials of HDAC inhibitors are still going on, the application for HDAC inhibitors has been limited at present . Not only in the anticancer treatment, but also non-oncology disease therapies are being investigated eagerly. Recently, applications of HDAC inhibitors in non-oncology diseases have also been revealed and proceeded to clinical trials. New indications for HDAC inhibitors are needed urgently in the future.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Patentes como Assunto , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Histona Desacetilases/uso terapêutico
14.
Eur J Med Chem ; 248: 115054, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36630883

RESUMO

The pursuit of activating the HDAC inhibitory template towards additional mechanisms spurred us to design dual modulators (Sig-1R agonist - HDAC inhibitor) via utilization of the core structural unit of donepezil (an FDA-approved anti-Alzheimer's agent) as a surface recognition part. Literature precedents coupled with our experience rendered us with several insights that led to the inclusion of chemically diverse linkers and hydroxamic acid (zinc-binding motif) as the other components of HDAC inhibitory pharmacophore. With this envisionment and clarity, donepezil-based HDAC inhibitory adducts were furnished and exhaustively explored for their anti-GBM efficacy. Resultantly, a magnificently potent HDAC inhibitor 10 [IC50 (HDAC6) = 2.7 nM, IC50 (HDAC2) = 0.71 µM] was pinpointed that was endowed with the ability to: i) exert cell growth inhibitory effects against Human U87MG GBM cells ii) cause death in TMZ-resistant GBM cells iii) induce subG1 arrest in GBM cells iv) prolong the survival of TMZ-resistant U87MG inoculated orthotopic mice (in-vivo studies) v) induce GBM cell apoptosis via binding to Sig-1R. Collectively, the results led to the identification of compound 10 as a tractable anti-GBM agent that deserves detailed investigation for the accomplishment of its candidature as a GBM therapeutic.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Animais , Camundongos , Donepezila/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Proliferação de Células
15.
J Adv Res ; 46: 159-171, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35752438

RESUMO

INTRODUCTION: The tumor microenvironment is mainly flooded with immunosuppressive cells and inhibitory cytokines, resulting in the inability of effective immune cells to infiltrate and recognize tumors and even the loss of anti-cancer ability. OBJECTIVES: We propose a novel HDAC6/HSP90 dual inhibitory strategy as well as a chemoimmunotherapeutic agent that does not only kill tumor cells but also destroys the tumor microenvironment and enhances anti-cancer immunity. METHODS: A hybrid scaffold construction approach was leveraged to furnish a series of rationally designed resorcinol-based hydroxamates as dual selective HDAC6/HSP90 inhibitors. The drug design campaign commenced with a fragment recruitment process to pinpoint validated structural units to inhibit HDAC6 and HSP90, followed by their installation in flexible HDAC inhibitory templates via an efficient and facile multistep synthetic route. Subsequent evaluations identified a strikingly potent selective HDAC6/HSP90 dual inhibitor (compound 17) via molecular and biological analysis in vitro and in vivo. RESULTS: Compound 17 exhibited not only direct cytotoxicity to cancer cells but also downregulated immune checkpoints (PD-L1 and IDO) expression in tumors via the inhibition of STAT1 pathway and degradation of oncogene proteins (Src, AKT, Rb, and FAK), leading to in vivo tumor growth inhibition. These multiple effects enabled the effector T cells to largely infiltrate into the tumor region and release granzyme B to kill cancer cells. In addition, compound 17 also decreased TGF-ß secretion from normal cells, resulting in the systemic reduction of immunosuppressive regulatory T cells. Delightfully, a cocktail treatment of compound 17 and anti-PD-1 antibodies demonstrated synergistic efficacy to eliminate solid tumors with 83.9% of tumor growth inhibition. CONCLUSION: In summary, the impressive activity profile of compound 17, as an effective anticancer agent and a potential immunosensitizer, forecasts the application of HDAC6/HSP90 dual inhibitory strategy to overcome the immunosuppressive tumor microenvironment.


Assuntos
Antineoplásicos , Microambiente Tumoral , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Proteínas de Choque Térmico HSP90/metabolismo
16.
Eur J Med Chem ; 243: 114773, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36179401

RESUMO

The Ca2+ entry from store-operated Ca2+ channel (SOC) is involved in regulating colorectal cancer progression, such as cell migration. SOC activation is due to STIM1 translocation and interaction with Orai1 upon Ca2+ depletion in the ER. Numerous SOC inhibitors, like 2-APB, have been developed and demonstrated their inhibition effects in the preclinical stage. However, most currently used SOC inhibitors have higher cytotoxicity or opposite effects at different doses, and the drugs to target SOC in the clinic are lacking. In this study, a total of 13 difluorobenzamide compounds had been synthesized and examined the inhibitory effects on SOC with Ca2+ imaging and wound-healing migration assay. Among them, 2,6-Difluoro-N-(5-(4-fluorophenyl)pyridine-2-yl)benzamide (MPT0M004, 8a) demonstrated a prominent inhibitory ability on SOC. Furthermore, the cell proliferation assay results showed that MPT0M004 (8a) had lower cytotoxicity than 2-APB, the reference compound. In the pharmacokinetic study, MPT0M004 (8a) has a long half-life (T1/2 = 24 h) and lower daily dose administered intravenously with an oral bioavailability (F = 34%). Therefore, MPT0M004 (8a) has the potential to be a lead compound as a SOC inhibitor and further develop into a potential drug to treat colorectal cancer.


Assuntos
Canais de Cálcio , Neoplasias Colorretais , Humanos , Canais de Cálcio/metabolismo , Proteína ORAI1 , Cálcio/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Sinalização do Cálcio
17.
J Biomed Sci ; 29(1): 65, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36064696

RESUMO

Unprecedented efforts of the researchers have been witnessed in the recent past towards the development of vaccine platforms for the control of the COVID-19 pandemic. Albeit, vaccination stands as a practical strategy to prevent SARS-CoV-2 infection, supplementing the anti-COVID19 arsenal with therapeutic options such as small molecules/peptides and antibodies is being conceived as a prudent strategy to tackle the emerging SARS-CoV-2 variants. Noteworthy to mention that collective efforts from numerous teams have led to the generation of a voluminous library composed of chemically and mechanistically diverse small molecules as anti-COVID19 scaffolds. This review article presents an overview of medicinal chemistry campaigns and drug repurposing programs that culminated in the identification of a plethora of small molecule-based anti-COVID19 drugs mediating their antiviral effects through inhibition of proteases, S protein, RdRp, ACE2, TMPRSS2, cathepsin and other targets. In light of the evidence ascertaining the potential of small molecule drugs to approach conserved proteins required for the viral replication of all coronaviruses, accelerated FDA approvals are anticipated for small molecules for the treatment of COVID19 shortly. Though the recent attempts invested in this direction in pursuit of enrichment of the anti-COVID-19 armoury (chemical tools) are praiseworthy, some strategies need to be implemented to extract conclusive benefits of the recently reported small molecule viz. (i) detailed preclinical investigation of the generated anti-COVID19 scaffolds (ii) in-vitro profiling of the inhibitors against the emerging SARS-CoV-2 variants (iii) development of assays enabling rapid screening of the libraries of anti-COVID19 scaffold (iv) leveraging the applications of machine learning based predictive models to expedite the anti-COVID19 drug discovery campaign (v) design of antibody-drug conjugates.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Vacinas , COVID-19/prevenção & controle , Humanos , Pandemias , Peptídeos , SARS-CoV-2
18.
Carbohydr Res ; 521: 108662, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36099721

RESUMO

Polygonatum odoratum is a perennial rhizomatous medicinal plant and different plant parts have been used in the treatment of various ailments. Herein, we have investigated the structural compositions of rhizome, leaf, and stem cell walls. We found 30-44% of polysaccharides in these wall preparations were cyclohexanediaminetetraacetic acid (CDTA) extractable, the proportion of heteromannans (HMs) in the rhizome is nearly three-fold compared to that of the leave and stem. The pectic polysaccharides of the rhizome are also structurally more diverse, with arabinans and type I and type II arabinogalactans being richest as shown by linkage study of the sodium carbonate (Na2CO3) extract. In addition, the 2-linked Araf was rhizome-specific, suggesting the cell walls in the rhizome had adapted to a more complex structure compared to that of the leaf and stem. Water-soluble polysaccharide fractions were also investigated, high proportion of Man as in 4-linked Manp indicated high proportion of HMs. The 21.4 kDa pectic polysaccharides and HMs derived from rhizome cell walls induced specific immune response in mice macrophage cells producing IL-1α and hematopoietic growth factors GM-CSF and G-CSF in vitro.


Assuntos
Polygonatum , Animais , Parede Celular , Fator Estimulador de Colônias de Granulócitos/análise , Fator Estimulador de Colônias de Granulócitos e Macrófagos/análise , Camundongos , Extratos Vegetais/química , Folhas de Planta , Plantas , Polygonatum/química , Polissacarídeos/análise , Polissacarídeos/farmacologia , Rizoma/química , Água/análise
19.
Eur J Med Chem ; 240: 114602, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35858522

RESUMO

A fragment recruitment process was conducted to pinpoint a suitable fragment for installation in the HDAC inhibitory template to furnish agents endowed with the potential to treat lung cancer. Resultantly, Ring C expanded deoxyvasicinone was selected as an appropriate surface recognition part that was accommodated in the HDAC three-component model. Delightfully, fused quinazolinone 6 demonstrating a magnificent anticancer profile against KRAS and EGFR mutant lung cancer cell lines (IC50 = 0.80-0.96 µM) was identified. Results of the mechanistic studies confirmed that the cell growth inhibitory effects of compound 6 stems for HDAC6 (IC50 = 12.9 nM), HDAC1 (IC50 = 49.9 nM) and HDAC3 inhibition (IC50 = 68.5 nM), respectively. Compound 6 also suppressed the colony formation ability of A549 cells, induced apoptosis, and increased autophagic flux. Key interactions of HDAC inhibitor 6 within the active site of HDAC isoforms were figured out through molecular modeling studies. Furthermore, a pH-responsive nanocarrier (Hyaluronic acid - fused quinazolinone 6 nanoparticles) was designed and assessed using a dialysis bag approach under both normal and acidic circumstances that confirmed the pH-sensitive nature of NPs. Delightfully, the nanoparticles demonstrated selective cell viability reduction potential towards the lung cancer cell lines (A549 lung cancer cell lines) and were found to be largely devoid of cell growth inhibitory effects under normal settings (L929, mouse fibroblast cells).


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Inibidores de Histona Desacetilases/química , Concentração de Íons de Hidrogênio , Neoplasias Pulmonares/metabolismo , Camundongos , Sistemas de Liberação de Fármacos por Nanopartículas , Quinazolinas , Quinazolinonas/administração & dosagem , Quinazolinonas/química , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico
20.
J Med Chem ; 65(13): 8596-8685, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35786935

RESUMO

Glioblastoma (GBM) is a highly malignant brain tumor characterized by a heterogeneous population of genetically unstable and highly infiltrative cells that are resistant to chemotherapy. Although substantial efforts have been invested in the field of anti-GBM drug discovery in the past decade, success has primarily been confined to the preclinical level, and clinical studies have often been hampered due to efficacy-, selectivity-, or physicochemical property-related issues. Thus, expansion of the list of molecular targets coupled with a pragmatic design of new small-molecule inhibitors with central nervous system (CNS)-penetrating ability is required to steer the wheels of anti-GBM drug discovery endeavors. This Perspective presents various aspects of drug discovery (challenges in GBM drug discovery and delivery, therapeutic targets, and agents under clinical investigation). The comprehensively covered sections include the recent medicinal chemistry campaigns embarked upon to validate the potential of numerous enzymes/proteins/receptors as therapeutic targets in GBM.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Descoberta de Drogas , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...